Τον Νοέμβριο του 1915, ο Αϊνστάιν παρουσίασε τη θεωρία της Γενικής Σχετικότητας σε μια σειρά διαλέξεων ενώπιον της Πρωσικής Ακαδημίας Επιστημών. Η τελευταία διάλεξη προκάλεσε αναστάτωση στον επιστημονικό κόσμο, καθώς ο Αϊνστάιν παρουσίασε μια θεωρία που αντικαθιστούσε την εξήγηση του Ισαάκ Νεύτωνα για τη βαρύτητα. Σύμφωνα με τη θεωρία αυτή, η βαρύτητα δεν θεωρείται ως το αποτέλεσμα μιας δύναμης, αλλά οφείλεται στην καμπύλωση του χωροχρόνου, η οποία προκαλείται από την περιεχόμενη στον χωρόχρονο μάζα και ενέργεια.
To δισδιάστατο ανάλογο παραμόρφωσης του χωροχρόνου. Η παρουσία μάζας αλλάζει τη γεωμετρία του χωροχρόνου, η οποία ερμηνεύεται ως βαρύτητα |
Βασική αρχή της θεωρίας είναι η ισοδυναμία των επιταχυνόμενων συστημάτων αναφοράς με συστήματα που ευρίσκονται εντός βαρυτικού πεδίου.
Τον Νοέμβριο του 1915, ο Αϊνστάιν παρουσίασε τη θεωρία της Γενικής Σχετικότητας σε μια σειρά διαλέξεων ενώπιον της Πρωσικής Ακαδημίας Επιστημών. Η τελευταία διάλεξη προκάλεσε αναστάτωση στον επιστημονικό κόσμο, καθώς ο Αϊνστάιν παρουσίασε μια θεωρία που αντικαθιστούσε την εξήγηση του Ισαάκ Νεύτωνα (Βλ. Ισαάκ Νεύτων ΕΔΩ) για τη βαρύτητα. Σύμφωνα με τη θεωρία αυτή, η βαρύτητα δεν θεωρείται ως το αποτέλεσμα μιας δύναμης, αλλά οφείλεται στην καμπύλωση του χωροχρόνου, η οποία προκαλείται από την περιεχόμενη στον χωρόχρονο μάζα και ενέργεια.
Βλ. Βιογραφία Άλμπερτ Αϊνστάιν ΕΔΩ
Ιστορικά Στοιχεία
Σύντομα μετά τη δημοσίευση της Ειδικής Θεωρίας της Σχετικότητας το 1905, ο Αϊνστάιν προσπάθησε να βρει τρόπο για το πώς να συμπεριλάβει τη βαρύτητα στο νέο σχετικιστικό πλαίσιο του. Το 1907, ένα απλό νοητικό πείραμα που περιλάμβανε έναν παρατηρητή σε ελεύθερη πτώση, ήταν η απαρχή για την οκταετή έρευνά του πάνω στη σχετικιστική θεωρία της βαρύτητας. Μετά από μία πληθώρα λανθασμένων εκκινήσεων, η εργασία του κορυφώθηκε με την παρουσίαση των Πεδιακών Εξισώσεων του Αϊνστάιν στην Πρωσική Ακαδημία Επιστημών το Νοέμβριο του 1915. Οι εξισώσεις αυτές προσδιορίζουν τον τρόπο με τον οποίο η γεωμετρία του χώρου και του χρόνου επηρεάζεται από την ύπαρξη ύλης και ακτινοβολίας.
Οι πεδιακές εξισώσεις του Αϊνστάιν είναι μη γραμμικές και πολύ δύσκολο να επιλυθούν. Ο Αϊνστάιν χρησιμοποίησε προσεγγιστικές μεθόδους στον υπολογισμό των αρχικών προβλέψεων της θεωρίας. Αλλά το 1916, ο αστροφυσικός Karl Schwarzschild βρήκε την πρώτη μη τετριμμένη ακριβή λύση των εξισώσεων του Αϊνστάιν, την επονομαζόμενη μετρική Schwarzschild. Η λύση αυτή έθεσε τα θεμέλια για την περιγραφή των τελικών σταδίων της βαρυτικής κατάρρευσης.Την ίδια χρονιά, έγιναν τα πρώτα βήματα προς τη γενίκευση της λύσης του Schwarzschild προς τα ηλεκτρικά φορτισμένα αντικείμενα,γεγονός που οδήγησε στην λύση Reissner–Nordström, η οποία τώρα είναι συνδεδεμένη με ηλεκτρικά φορτισμένες μαύρες τρύπες. Το 1917, ο Αϊνστάιν εφάρμοσε τη θεωρία του στο σύμπαν σαν ολότητα, ανοίγοντας το πεδίο της σχετικιστικής κοσμολογίας. Από τη σύγχρονη σκοπιά, θεώρησε ένα στατικό σύμπαν, εισάγοντας μία νέα παράμετρο στις αρχικές του πεδιακές εξισώσεις-την κοσμική σταθερά-για να αναπαράγει την "παρατήρηση" αυτή. Μέχρι το 1929, παρ' όλα αυτά, η δουλεία του Hubble και άλλων είχαν αποδείξει ότι το σύμπαν μας επεκτείνεται. Αυτό περιγράφεται άμεσα από τις λύσεις του Friedmann, οι οποίες βρέθηκαν το 1922 και σε αυτές δεν εμφανίζεται η κοσμολογική σταθερά. Ο Lemaître χρησιμοποίησε τις εξισώσεις αυτές για να διατυπώσει την αρχική μορφή των μοντέλων της Μεγάλης Έκρηξης (Big Bang), σύμφωνα με τα οποία το σύμπαν εξελίχθηκε από μία ζεστή και πυκνή κατάσταση. Ο Αϊνστάιν αργότερα χαρακτήρισε την κοσμολογική σταθερά ως το μεγαλύτερο σφάλμα της ζωής του.
Εκείνη την περίοδο, η γενική σχετικότητα ήταν από τις πιο περίεργες μεταξύ των υπολοίπων φυσικών θεωριών. Προφανώς, ήταν ανώτερη από τη Νευτώνεια βαρύτητα, συμφωνούσε με την ειδική σχετικότητα και ευθυνόταν για αρκετά φαινόμενα τα οποία η Νευτώνεια θεωρία αδυνατούσε να εξηγήσει. Ο ίδιος ο Αϊνστάιν έδειξε το 1915 πώς η θεωρία του εξηγούσε την ανώμαλη επιπρόσθετη προήγηση του περιηλίου του Ερμή χωρίς αυθαίρετες παραμέτρους("fudge factors"). Όμοια, το 1919 μία αποστολή με επικεφαλής τον Eddington επιβεβαίωσε την πρόβλεψη της γενικής σχετικότητας για την εκτροπή του αστρικού φωτός από τον Ήλιο κατά τη διάρκεια της ολικής έκλειψης του Ηλίου στις 29 Μαΐου το 1919, κάνοντας τον Αϊνστάιν άμεσα διάσημο. Ωστόσο, η θεωρία εντάχθηκε στο κύριο ρεύμα της θεωρητικής φυσικής και της αστροφυσικής μόνο με τις εξελίξεις μεταξύ του 1960 και του 1975,η οποία είναι τώρα γνωστή ως η χρυσή εποχή της γενικής σχετικότητας. Οι φυσικοί άρχισαν να κατανοούν την έννοια της μαύρης τρύπας, και να αναγνωρίζουν ως κβάζαρ σαν μία αστροφυσική έκφανση. Ακόμη πιο ακριβείς ηλιακές δοκιμές επιβεβαίωσαν την προβλεπτική ικανότητα της θεωρίας, και πλέον η σχετικιστική κοσμολογία επιδεχόταν άμεσες παρατηρησιακές δοκιμές.
Από την κλασική μηχανική στη γενική σχετικότητα
Η γενική σχετικότητα γίνεται αντιληπτή μέσω της εξέτασης των ομοιοτήτων και των αποκλίσεών της με την κλασική φυσική. Το πρώτο βήμα είναι η συνειδητοποίηση ότι η κλασική μηχανική και ο νόμος του Νεύτωνα για τη βαρύτητα επιδέχονται γεωμετρική περιγραφή. Ο συνδυασμός αυτή της περιγραφής με τους νόμους της ειδικής σχετικότητας οδηγούν σε πειραματική απόδειξη της γενικής θεωρίας της σχετικότητας.
Γεωμετρία της Νευτώνειας Βαρύτητας
Η βάση της κλασσικής μηχανικής αποτελείται από τη θεωρία ότι η κίνηση ενός σώματος μπορεί να περιγραφεί από τον συνδυασμό των ελεύθερων (αδρανειακών) κίνησεών του και των αποκλίσεών του από τις ελεύθερες αυτές κινήσεις. Τέτοιες αποκλίσεις προκαλούνται από τις εξωτερικές δυνάμεις που ασκούνται στο σώμα, όπως περιγράφει ο δεύτερος νόμος του Νεύτωνα για την κίνηση, ο οποίος αναφέρει ότι η συνισταμένη δύναμη που ασκείται σε ένα σώμα ισούται με το γινόμενο της μάζας του σώματος και της επιτάχυνσής του. Οι αδρανειακές κινήσεις σχετίζονται άμεσα με τη γεωμετρία του χώρου και του χρόνου (χωροχρόνου): Στα τυποποιημένα συστήματα αναφοράς της κλασσικής μηχανικής, η ελεύθερη κίνηση των αντικειμένων γίνεται με σταθερή ταχύτητα σε ευθείες γραμμές. Στο σύγχρονο ιδίωμα, οι τροχιές κίνησης των ελεύθερων σωμάτων είναι γεωδαισιακές, ευθείες κοσμικές γραμμές σε καμπύλο χωροχρόνο.
Αντίστροφα, θα μπορούσε κανείς να αναμένει ότι οι αδρανειακές κινήσεις, όταν προσδιοριστούν από την παρατήρηση της πραγματικής κίνησης των σωμάτων και λαμβάνοντας υπόψιν τις εξωτερικές δυνάμεις (όπως ηλεκτρομαγνητισμού ή τριβής ), μπορούν να χρησιμοποιηθούν για να καθοριστεί η γεωμετρία του χώρου, καθώς και μία συντεταγμένη χρόνου. Ωστόσο, υπάρχει μια ασάφεια όταν η βαρύτητα μπαίνει στο παιχνίδι. Σύμφωνα με το νόμο της βαρύτητας του Νεύτωνα , αλλά και σύμφωνα με πιστοποιημένα ανεξάρτητα πειράματα, όπως αυτό της Eötvös και των διαδόχων του (βλ. Eötvös πείραμα ), υπάρχει μια καθολικότητα της ελεύθερης πτώσης (επίσης γνωστή ως αδύναμη αρχή της ισοδυναμίας , ή καθολική ισότητα των αδρανειακών και παθητικών -βαρυτικών μαζών): η τροχιά ενός σώματος σε ελεύθερη πτώση εξαρτάται μόνο από τη θέση του και την αρχική ταχύτητα, και όχι από οποιαδήποτε από τις ιδιότητες του υλικού του. Μία απλοποιημένη εκδοχή αυτής της διαπίστωσης είναι ενσωματωμένη στο πείραμα του Einstein με τον ανελκυστήρα: για έναν παρατηρητή σε ένα μικρό κλειστό χώρο, είναι αδύνατο να αποφασίσει, με τη χαρτογράφηση της πορείας ενός σώματος, όπως μία μπάλα σε πτώση, αν το δωμάτιο είναι σε κατάσταση ηρεμίας σε ένα βαρυτικό πεδίο, ή στο διάστημα πάνω σε ένα επιταχυνόμενο πυραύλο που δημιουργεί μια δύναμη ίση με τη βαρύτητα.
Με δεδομένη την οικουμενικότητα της ελεύθερης πτώσης, δεν υπάρχει αισθητή διαφορά μεταξύ της αδρανειακής κίνησης και της κίνησης κάτω από την επίδραση βαρυτικής δύναμης. Αυτό υποδηλώνει τον ορισμό μιας νέας κατηγορίας αδρανειακής κίνησης, που περιλαμβάνει τα αντικείμενα σε ελεύθερη πτώση υπό την επίδραση της βαρύτητας. Αυτή η νέα κατηγορία προτιμώμενων κινήσεων, επίσης, ορίζει τη γεωμετρία του χώρου και του χρόνου-σε μαθηματικούς όρους, είναι η γεωδαιτική κίνηση η οποία σχετίζεται με μια συγκεκριμένη γεωμετρική σύνδεση που εξαρτάται από την κλίση του βαρυτικού δυναμικού. Το διάστημα, σε αυτή την κατασκευή, εξακολουθεί να έχει τη συνήθη Ευκλείδεια γεωμετρία. Πάντως, ο χωροχρόνος ως σύνολο είναι πιο περίπλοκος. Όπως μπορεί να αποδειχθεί με τη χρήση απλών πειραμάτων σκέψης που ασχολούνται με τις τροχιές σωματιδίων σε ελεύθερη πτώση, το αποτέλεσμα της μεταφοράς διανυσμάτων χωροχρόνου που μπορούν να δηλώσουν την ταχύτητα ενός σωματιδίου, θα ποικίλει ανάλογα με τροχιά του σωματιδίου. Με μαθηματικούς όρους, η Νευτώνεια σύνδεση δεν είναι ολοκληρώσιμη . Από αυτό, μπορεί κανείς να συμπεράνει ότι ο χωροχρόνος είναι καμπύλος. Το αποτέλεσμα είναι μια γεωμετρική χάραξη της νευτώνειας βαρύτητας χρησιμοποιώντας μόνο έννοιες συναλλοίωσης, δηλαδή μια περιγραφή η οποία ισχύει σε οποιοδήποτε επιθυμητό σύστημα συντεταγμένων. Σε αυτήν την γεωμετρική περιγραφή, τα παλιρροϊκά φαινόμενα σχετίζονται με την παράγωγο της σύνδεσης, που δείχνει το πώς η τροποποιημένη γεωμετρία προκαλείται από την παρουσία μάζας.
Κώνος φωτός |
Σχετικιστική Γενίκευση
Όσο ενδιαφέρουσα από γεωμετρική σκοπιά μπορεί να είναι η νευτώνεια βαρύτητα, η βάση της η κλασική μηχανική, είναι απλώς μια περιοριστική περίπτωση της (ειδικής) σχετικιστικής μηχανικής (παράδοξο του Μπέντλεϊ).Στη γλώσσα της συμμετρίας: εκεί όπου η βαρύτητα μπορεί να αγνοηθεί, φυσική είναι περισσότερο η αναλλοίωτη του Lorentz στην ειδική σχετικότητα παρά η αναλλοίωτη του Γαλιλαίου στην κλασική μηχανική. Οι διαφορές μεταξύ των δύο γίνονται σημαντικές όταν ασχολούμαστε με ταχύτητες που προσεγγίζουν την ταχύτητα του φωτός, και με φαινόμενα υψηλής ενέργειας.
Με τη συμμετρία του Lorentz, επιπλέον δομές μπαίνουν στο παιχνίδι. Προσδιορίζονται από το σύνολο των κώνων φωτός (βλέπε εικόνα στα αριστερά). Οι κώνοι φωτός ορίζουν ένα causal structure: για κάθε ενδεχόμενο A, υπάρχει ένα σύνολο ενδεχομένων τα οποία μπορούν είτε να επηρεάσουν είτε να επηρεαστούν από το Α μέσω σημάτων είτε αλληλεπιδράσεων τα οποία δε χρειάζεται να ταξιδέψουν με ταχύτητα μεγαλύτερη από αυτή του φωτός. (όπως το ενδεχόμενο Β στην εικόνα), και ένα σύνολο ενδεχομένων για τα οποία μια τέτοια επίδραση είναι αδύνατη (όπως το ενδεχόμενο C στην εικόνα). Τα σύνολα αυτά είναι ανεξάρτητα από τον παρατηρητή. Σε συνδυασμό με το ίχνος στον 4-διάστατο χωροχρόνο της ελεύθερης πτώσης σωματιδίων, οι κώνοι φωτός μπορούν να χρησιμοποιηθούν για την ανακατασκευή της ημι-Ριμάννιας μετρικής του χωροχρόνου, σε τουλάχιστον πάνω έναν θετικό παράγοντα κοσμικής κλίμακας. Με μαθηματικούς όρους, αυτό καθορίζει μια σύμμορφη δομή.
Η ειδική σχετικότητα ορίζεται σε απουσία βαρύτητας, οπότε για πρακτικές εφαρμογές, είναι κατάλληλο μοντέλο σε περιπτώσεις όπου η βαρύτητα μπορεί να αγνοηθεί. Επαναφέροντας τη βαρύτητα στο παιχνίδι, και υποθέτοντας την καθολικότητα της ελεύθερης πτώσης, μία ανάλογη αιτιολογία όπως και στην προηγούμενη ενότητα ισχύει: δεν υπάρχουν παγκόσμια αδρανειακά συστήματα. Αντ' αυτού υπάρχουν κατά προσέγγιση αδρανειακά συστήματα τα οποία κινούνται παράλληλα με σωματίδια τα οποία εκτελούν ελεύθερη πτώση. Στη γλώσσα του χωροχρόνου: οι χρονικές ευθείες που ορίζουν τα αδρανειακά συστήματα στα οποία δεν υπάρχει βαρύτητα μετατρέπονται σε γραμμές οι οποίες είναι καμπυλωμένες η μία προς την άλλη, γεγονός που υποδηλώνει ότι η συμπερίληψη της βαρύτητας απαιτεί μια αλλαγή στη γεωμετρία του χωροχρόνου.
Εξισώσεις του Αϊνστάιν
Έχοντας διατυπώσει την σχετικιστική, γεωμετρική έκδοση των αποτελεσμάτων της βαρύτητας, το ζήτημα της προέλευσης της παραμένει. Στη νευτώνεια βαρύτητα, η πηγή είναι η μάζα.Στην ειδική θεωρία της σχετικότητας, η μάζα αποδεικνύεται ότι είναι μέρος μιας γενικότερης ποσότητας που ονομάζεται τανυστής ενέργειας-ορμής, που περιλαμβάνει τόσο την ενέργεια και την πυκνότητα ορμής καθώς και το άγχος (δηλαδή, την πίεση και την διάτμηση). Χρησιμοποιώντας την αρχή της ισοδυναμίας, αυτός ο τανυστής γενικεύεται εύκολα σε καμπύλο χωρόχρονο.Αντλώντας επιπλέον την αναλογία με γεωμετρικά νευτώνεια βαρύτητα, είναι φυσικό να υποθέσουμε ότι η εξίσωση πεδίου για τη βαρύτητα σχετίζεται με τον τανυστή Ricci, ο οποίος περιγράφει μια συγκεκριμένη κατηγορία παλιρροιακών φαινομένων: τη μεταβολή του όγκου για ένα μικρό σύννεφο των σωματιδίων που είναι αρχικά σε κατάσταση ηρεμίας, και στη συνέχεια πέφτουν ελεύθερα.Στην ειδική θεωρία της σχετικότητας, η διατήρηση της ενέργειας-ορμής αντιστοιχεί στη δήλωση ότι η ενέργεια-ορμή είναι τανυστής ελεύθερης απόκλισης.Αυτή η φόρμουλα, επίσης, είναι εύκολα γενικευμένη σε καμπύλες χωροχρόνου με την αντικατάσταση των μερικών παραγώγων με καμπύλες-πολλαπλών ομολόγων τους, συναλλοίωτα παράγωγα μελετήθηκαν στη διαφορική γεωμετρία. Με την πρόσθετη αυτή κατάσταση- η συναλλοίωτη απόκλιση του τανυστή ενέργειας-ορμής, και ως εκ τούτου του ό,τι είναι στην άλλη πλευρά της εξίσωσης, είναι μηδέν-το απλούστερο σύνολο εξισώσεων είναι αυτές που ονομάζονται (πεδίο) εξισώσεις του Einstein:
Στην αριστερή πλευρά είναι ο τανυστής Einstein,ένας ειδικός χωρίς απόκλιση συνδυασμός του τανυστή Ricci και του μετρικού. Ειδικότερα,
είναι η μονοδιάστατη καμπυλότητα. Ο τανυστής Ricci από μόνος του σχετίζεται με τον γενικότερο τανυστή καμπυλότητας Riemann, όπως
Στη δεξιά πλευρά, Tab είναι ο τανυστής ενέργειας-ορμής. Όλοι οι τανυστές είναι γραμμένοι σε αφηρημένο συμβολικό δείκτη. Συνδυάζοντας την πρόβλεψη της θεωρίας με τα παρατηρήσιμα αποτελέσματα για τις πλανητικές τροχιές (ή, ισοδύναμα, εξασφαλίζοντας ότι η αδύναμη-βαρύτητα, χαμηλό-όριο ταχύτητας είναι νευτώνεια μηχανική), η σταθερά αναλογίας μπορεί να καθοριστεί ως κ = 8πG/c4, με G σταθερά βαρύτητας και c η ταχύτητα του φωτός. Όταν δεν υπάρχει ύλη, έτσι ώστε ο τανυστής ενέργειας-ορμης να εξαφανίζεται, το αποτέλεσμα είναι οι κενές εξισώσεις του Αϊνστάιν.
Υπάρχουν εναλλακτικές λύσεις για τη γενική σχετικότητα που στηρίζονται πάνω στις ίδιες εγκαταστάσεις,που περιλαμβάνουν πρόσθετους κανόνες και / ή περιορισμούς, που οδηγούν σε διαφορετικές εξισώσεις πεδίου. Παραδείγματα είναι η Brans-Dicke θεωρία, ο τηλεπαραλληλισμός και η Einstein-Cartan θεωρία.
Ορισμός και βασικές εφαρμογές
Η παραγωγή που περιγράφεται στην προηγούμενη ενότητα περιέχει όλες τις πληροφορίες που απαιτούνται για τον καθορισμό της γενικής σχετικότητας, περιγράφουν βασικές ιδιότητες της, και αντιμετωπίζουν ένα ζήτημα ζωτικής σημασίας στη φυσική, δηλαδή το πώς η θεωρία μπορεί να χρησιμοποιηθεί ως μοντέλο για την οικοδόμηση.
Ορισμός και βασικές ιδιότητες
Η γενική σχετικότητα είναι μια μετρική θεωρία της βαρύτητας.Στον πυρήνα της είναι οι εξισώσεις του Αϊνστάιν, που περιγράφουν τη σχέση μεταξύ της γεωμετρίας των τεσσάρων διαστάσεων,την ψευδο-Riemann πολλαπλότητα που εκπροσωπεί τον χωροχρόνο, και την ενέργεια-ορμή που περιέχονται σε αυτό το χωροχρόνο. Φαινόμενα που στην κλασική μηχανική αποδίδονται στη δράση της δύναμης της βαρύτητας (όπως η ελεύθερη πτώση, τροχιακή κίνηση, και πορείες διαστημόπλοιων), αντιστοιχούν σε αδρανειακή κίνηση μέσα σε μια κυρτή γεωμετρία του χωροχρόνου στη γενική σχετικότητα, δεν υπάρχει βαρυτική δύναμη εκτροπής αντικεiμένων από τις φυσικές, ευθείες διαδρομές τους. Αντ'αυτού, η βαρύτητα αντιστοιχεί σε μεταβολές στις ιδιότητες του χώρου και του χρόνου, το οποίο με τη σειρά του αλλάζει τις πιο ευθείες-πιθανές διαδρομές που τα αντικείμενα θα ακολουθήσουν φυσικά. Η καμπυλότητα είναι, με τη σειρά της, που προκαλείται από την ενέργεια-ορμής της ύλης.Παραφράζοντας τον σχετικιστική John Archibald Wheeler, ο χωροχρόνος λέει στην ύλη πως να κινηθεί. Η ύλη λέει στον χωροχρόνο πώς να καμπυλωθεί. Ενώ η γενική σχετικότητα αντικαθιστά το βαθμωτό δυναμικό της βαρύτητας της κλασικής φυσικής από ένα συμμετρικό βαθμίδας-δύο τανυστή, ο τελευταίος μειώνει την πρώτη, σε περιορισμένες περιπτώσεις. Για τα ασθενή βαρυτικά πεδία και αργά σε ταχύτητα σε σχέση με την ταχύτητα του φωτός, οι προβλέψεις της θεωρίας συγκλίνουν με εκείνα του νόμου του Νεύτωνα της παγκόσμιας έλξης. Αφού είναι κατασκευασμένη με τανυστές, η γενική σχετικότητα παρουσιάζει γενική συνδιακύμανση:οι νόμοι της-και οι περαιτέρω νόμοι που διατυπώνονται στο πλαίσιο της γενικής σχετικότητας-λαμβάνουν την ίδια μορφή σε όλα τα συστήματα συντεταγμένων. Επιπλέον, η θεωρία δεν περιέχει κανένα αναλλοίωτο γεωμετρικά δομικό υπόβαθρο, δηλαδή είναι ανεξάρτητο υπόβαθρο. Ικανοποιεί έτσι μια πιο αυστηρή γενική αρχή της σχετικότητας, δηλαδή ότι οι νόμοι της φυσικής είναι οι ίδιοι για όλους τους παρατηρητές. Σε τοπικό επίπεδο, όπως εκφράζεται στην αρχή της ισοδυναμίας, ο χωροχρόνος είναι Minkowskian, και οι νόμοι της φυσικής αναδεικνύουν την τοπική αναλλοίωτη του Lorentz.
Η πιο διάσημη πρώιμη πειραματική επαλήθευση
της γενικής σχετικότητας έγινε το 1919,
κατά τη διάρκεια ηλιακής έκλειψης.
Σύμφωνα με τον Sir Arthur Stanley Eddington,
μπορούσε να παρατηρηθεί η καμπύλωση του φωτός
ενός αστέρα γύρω από τον ήλιο, καθώς έφτανε στον
παρατηρητή στη Γη.
|
Πειραματική επαλήθευση
Για την επαλήθευση της Γενικής Σχετικότητας ο Άλμπερτ Αϊνστάιν είχε προτείνει τρία πειραματικά τεστ:
- Τη μέτρηση της εκτροπής του φωτός των αστεριών καθώς οι ακτίνες περνούν πολύ κοντά από τον Ήλιο. Το αποτέλεσμα που προβλεπόταν θεωρητικά επιβεβαιώθηκε το 1919 με βάση φωτογραφίες της θέσης αστεριών πολύ κοντά στον ηλιακό δίσκο κατά τη διάρκεια μιας ολικής έκλειψης ηλίου στο νησί Πρίνσιπε του Ατλαντικού.
- Μια θεωρητική πρόβλεψη για τη μετατόπιση του περιηλίου του Ερμή. Το περιήλιο του Ερμή "στρέφεται" αργά γύρω από τον ήλιο, και ο Αϊνστάιν εξήγησε τη μετατόπιση αυτή ως αποτέλεσμα της Γενικής Σχετικότητας, επιβεβαιωμένος πάλι από το πείραμα.
- Τη μετατόπιση φάσματος προς το ερυθρό λόγω της βαρύτητας. Το τεστ αυτό έγινε το 1959 στο Πανεπιστήμιο του Χάρβαρντ με επιτυχία, και αποτέλεσε και την πρώτη μέτρηση υψηλής ακρίβειας των αποτελεσμάτων της Γενικής Σχετικότητας.
Τα επόμενα χρόνια η Γενική Θεωρία της Σχετικότητας για τη βαρύτητα επιβεβαιώθηκε και με πλήθος άλλων πειραμάτων, το τελευταίο από τα οποία, με τη χρήση του δορυφόρου Gravity B, επιχείρησε να μετρήσει το στροβιλισμό του χωρόχρονου που προκαλεί η ιδιοπεριστροφή της γης και τη στρέβλωσή του κοντά σε μεγάλες μάζες (το λεγόμενο γεωδαιτικό φαινόμενο).
Μαύρες τρύπες και άλλα συμπαγή αντικείμενα
Όποτε η αναλογία μάζας από ένα αντικείμενο στην ακτίνα γίνεται επαρκώς μεγάλη, η γενική σχετικότητα προβλέπει το σχηματισμό μιας μαύρης τρύπας, μια περιοχή του χώρου από την οποία τίποτα, ακόμη και το φως, δεν μπορεί να ξεφύγει. Στα τρέχοντα αποδεχόμενα μοντέλα αστρικής εξέλιξης,αστέρες νετρονίων 1.4 ηλιακές μάζες , και αστρικές μαύρες τρύπες με λίγες εώς μερικές δεκάδες ηλιακές μάζες, πιστεύεται ότι είναι η τελική κατάσταση για την εξέλιξη των άστρων. Συνήθως ένας γαλαξίας έχει μία υπερσυμπαγή μαύρη τρύπα με μερικά εκατομμύρια εώς μερικά δισεκατομμύρια ηλιακές μάζες στο κέντρο του, και η παρουσία της οποίας έχει διαδραματίσει σημαντικό ρόλο στη διαμόρφωση του γαλαξία και μεγαλύτερων κοσμικών δομών.
Η προσομοίωση είναι βασισμένη στις εξισώσεις της γενικής σχετικότητας: ένα αστέρι καταρρέει για να σχηματίσει μια μαύρη τρύπα ενώ εκπέμπει βαρυτικά κύματα.
Αστρονομικά, η πιο σημαντική ιδιότητα των συμπαγών αντικειμένων είναι ότι παρέχουν ένα εξαιρετικά αποτελεσματικό μηχανισμό για τη μετατροπή της βαρυτικής ενέργειας σε ηλεκτρομαγνητική ακτινοβολία. Επίσης, η πτώση της σκόνης ή των αερίων της ύλης σε αστρική ή σε υπερσυμπαγείς μαύρες τρύπες, πιστεύεται ότι είναι υπεύθυνη για μερικά θεαματικά φωτεινά αστρονομικά αντικείμενα, κυρίως διάφορα είδη των ενεργών γαλαξιακών πυρήνων σε γαλαξιακές κλίμακες και αστρικού μεγέθους αντικείμενα, όπως microquasars. Ειδικότερα, ο σχηματισμός μπορεί να οδηγήσει σε σχετικιστικούς πίδακες, επικεντρωμένες δέσμες υψηλής ενέργειας σωματίδια που αποτελούν αντικείμενα που πετούνε στο διάστημα με σχεδόν την ταχύτητα του φωτός. Η γενική σχετικότητα παίζει κεντρικό ρόλο όλων αυτών των φαινομένων, και των παρατηρήσεων που παρέχουν ισχυρές ενδείξεις για την ύπαρξη μαύρων τρυπών με τις ιδιότητες που προβλέπονται από τη θεωρία.
Οι μαύρες τρύπες είναι επίσης περιζήτητοι στόχοι για την αναζήτηση βαρυτικών κυμάτων(βλ. κύματα βαρύτητας). Συνοψίζοντας η μαύρη τρύπα πρέπει να οδηγήσει σε μερικά από τα ισχυρότερα σήματα βαρυτικών κυμάτων φθάνοντας σε ανιχνευτές εδώ στη Γη, και το στάδιο αμέσως πριν από τη συγχώνευση ("τιτίβισμα") θα μπορούσε να χρησιμοποιηθεί ως ένα "πρότυπο κερί" για να υπολογίσει την απόσταση της συγχώνευσης των γεγονότων και ως εκ τούτου να χρησιμεύσει ως ανιχνευτής της κοσμικής διαστολής σε μεγάλες αποστάσεις. Τα βαρυτικά κύματα που παράγονται από μία αστρική μαύρη τρύπα βυθίζονται σε μια υπερμεγέθη μαύρη τρύπα θα πρέπει να παρέχουν άμεσες πληροφορίες για τη γεωμετρία της υπερμεγέθους μαύρης τρύπας.
Κοσμολογία
Τα σημερινά μοντέλα της κοσμολογίας βασίζονται στις εξισώσεις πεδίου του Αϊνστάιν,που περιλαμβάνουν την κοσμολογική σταθερά Λ αφού έχει σημαντική επιρροή στη μεγάλης κλίμακας δυναμική του σύμπαντος
όπου gab είναι η χωρορονική μετρική. Ισότροπα και ομογενή διαλύματα αυτών των ενισχυμένων εξισώσεων,οι Friedmann–Lemaître–Robertson–Walker λυσεις, επιτρέπουν στους φυσικούς να μοντελοποιήσουν το σύμπαν που έχει εξελιχθεί τα τελευταία 14 δις χρόνια από μία ζεστή,προ Big Bang φάση. Μόλις ένας μικρός αριθμός παραμέτρων (για παράδειγμα μέση πυκνότητα της ύλης του σύμπαντος) έχουν καθοριστεί από την αστρονομική παρατήρηση, περαιτέρω στοιχεία παρατήρησης μπορούν να χρησιμοποιηθούν για να θέσουν τα μοντέλα για τη δοκιμή. Προβλέψεις, όλες επιτυχημένες, περιλαμβάνουν την αρχική αφθονία των χημικών στοιχείων που σχηματίζονται σε μια περίοδο της αρχέγονης νουκλεοσύνθεσης, τις μεγάλης κλίμακας δομές του σύμπαντος, και την ύπαρξη και τις ιδιότητες ενός "θερμικού echo" από την αρχή του σύμπαντος, την κοσμική ακτινοβολία υποβάθρου. Αστρονομικές παρατηρήσεις του κοσμολογικού ρυθμού διαστολής επιτρέπουν την συνολική ποσότητα της ύλης στο σύμπαν να υπολογιστεί,παρόλο που η φύση της ύλης παραμένει μυστηριώδης εν μέρει. Περίπου 90% της συνολικής ύλης εμφανίζεται να είναι η επονομαζόμενη σκοτεινή ύλη ,η οποία έχει μάζα (ή, ισοδύναμα, βαρυτική επίδραση), αλλά δεν αλληλεπιδρά ηλεντρομαγνητικά και, ως εκ τούτου, δεν μπορεί να παρατηρηθεί άμεσα. Δεν υπάρχει γενίκα αποδεχτή περιγραφή αυτού του νέου είδους της ύλης, μέσα στο πλαίσιο των γνωστών σωματιδίων φυσικής ή αλλού. Παρατηρίσιμες αποδείξεις από την μετατοπιση προς το ερυθρό έρευνες των μακρινών supernova και τις μετρήσεις της κοσμικής ακτινοβολίας υποβάθρου δείχνουν επίσης ότι η εξέλιξη του σύμπαντος μας επηρεάζεται σημαντικά από μια κοσμολογική σταθερά με αποτέλεσμα την επιτάχυνση της κοσμικής διαστολής ή,ισοδύναμα,από μια μορφή ενέργειας με μια ασυνήθιστη εξίσωση της κατάστασης, που είναι γνωστή ως σκοτεινή ενέργεια, η φύση της οποίας παραμένει ασαφής. Μία επονομαζόμενη πληθωριστική φάση, μία πρόσθετη φάση μιας σημαντικά επιταχυνόμενης επέκτασης σε κοσμικές περιόδους περίπου δευτερολέπτων, υποτέθηκε το 1980 για λογαριασμό αρκετά αινιγματικών παρατηρήσεων που ήταν ανεξήγητες από κλασικά κοσμολογικά μοντέλα , όπως η σχεδόν τέλεια ομοιογένεια της κοσμικής ακτινοβολίας υποβάθρου. Πρόσφατες μετρήσεις της κοσμικής ακτινοβολίας υποβάθρου έχουν ως αποτέλεσμα την πρώτη απόδειξη για αυτό το σενάριο. Ωστόσο, υπάρχει μια απίστευτη ποικιλία πιθανών πληθωριστικών σεναρίων, η οποία δεν μπορεί να περιορίζεται από τις τρέχουσες παρατηρήσεις. Ένα ακόμη μεγαλύτερο ερώτημα είναι η φυσική του συντομότερου σύμπαντος, πριν από την πληθωριστική φάση και κοντά στο σημείο όπου τα κλασικά μοντέλα προβλέπουν τη μοναδικότητα του Big Bang. Μια έγκυρη απάντηση θα απαιτούσε μια πλήρη θεωρία της κβαντικής βαρύτητας, η οποία δεν έχει ακόμη αναπτυχθεί (πχ. το τμήμα σχετικά με την κβαντική βαρύτητα,από κάτω).
Προηγμένες έννοιες
Το χτίσιμο του μοντέλου
Η βασική έννοια της γενικής σχετικότητας μοντέλου οικοδόμησης είναι μία από τις λύση των εξισώσεων του Αϊνστάιν. Λαμβάνοντας υπόψη τις δύο εξισώσεις του Αϊνστάιν και κατάλληλες εξισώσεις για τις ιδιότητες της ύλης, μια τέτοια λύση αποτελείται από μία ειδική ημι-Riemannian πολλαπλότητα (συνήθως ορίζεται δίνοντας τη μέτρηση σε συγκεκριμένες συντεταγμένες),και συγκεκριμένα υλικά σώματα που ορίζονται στην εν λόγω πολλαπλότητα. Η ύλη και η γεωμετρία πρέπει να πληρούν τις εξισώσεις του Αϊνστάιν, έτσι ώστε, ο ενέργειας-ορμής τανυστής της ύλης να είναι ελεύθερος απόκλισης. Η ύλη πρέπει, φυσικά, να πληρεί οποιεσδήποτε πρόσθετες εξισώσεις επιβλήθηκαν στις ιδιότητές του. Με λίγα λόγια, μια τέτοια λύση είναι ένα σύμπαν μοντέλο που ικανοποιεί τους νόμους της γενικής σχετικότητας, και, ενδεχομένως, επιπλέον νόμων που διέπουν οπουδήποτε η ύλη μπορεί να είναι παρούσα.
Οι Εξισώσεις του Αϊνστάιν είναι μη γραμμικές διαφορικές εξισώσεις και, ως εκ τούτου, είναι δύσκολο να επιλυθούν ακριβώς. Παρ 'όλα αυτά, μια σειρά από ακριβή λύση είναι γνωστές, παρόλο που μόνο μερικοί έχουν άμεσες φυσικές εφαρμογές. Οι πιο γνωστές ακριβείς λύσεις, καθώς επίσης και τα πλέον ενδιαφέροντα από την άποψη της φυσικής, είναι η Schwarzschild λύση, η Reissner-Nordström λύση και η Kerr μετρική , κάθε μία από τις οποίες αντιστοιχεί σε μία ορισμένου τύπου μαύρη τρύπα σε ένα κατά τα άλλα άδειο σύμπαν, και τα Friedmann–Lemaître–Robertson–Walker και de Sitter σύμπαντα, καθε ένα απο αυτά περιγράφει έναν επεκτεταμένο κόσμο. Ακριβείς λύσεις του μεγάλου θεωρητικού ενδιαφέροντος περιλαμβάνουν το Gödel σύμπαν (που ανοίγει την ενδιαφέρουσα δυνατότητα ταξίδι στο χρόνο σε καμπύλες χωροχρόνου), η Taub-NUT λύση (ένα σύμπαν μοντέλο που είναι ομοιογενές, αλλά ανισότροπο) και αντι-de Sitter χώρου (η οποία έχει έρθει πρόσφατα στο προσκήνιο στο πλαίσιο αυτών που ονομάζονται Maldacena εικασίες ).
Δεδομένης της δυσκολίας εξεύρεσης ακριβών λύσεων, οι εξισώσεις πεδίου του Einstein επίσης επιλύονται συχνά από αριθμητική ολοκλήρωση σε έναν υπολογιστή, ή με την εξέταση μικρών διαταραχών των ακριβών λύσεων.Στον τομέα της αριθμητικής σχετικότητας, οι ισχυροί υπολογιστές χρησιμοποιούνται για να προσομοιώσουν τη γεωμετρία του χωροχρόνου και να λύσουν τις εξισώσεις του Αϊνστάιν για ενδιαφέρουσες καταστάσεις, όπως δύο συγκρουόμενες μαύρες τρύπες. Κατ 'αρχήν, οι μέθοδοι αυτοί μπορούν να εφαρμοστούν σε οποιοδήποτε σύστημα, αν υπάρχουν επαρκείς πόροι από υπολογιστή, και μπορούν να αντιμετωπίστούν τα θεμελιώδη ζητήματα, όπως οι γυμνές ιδιομορφίες. Κατά προσέγγιση λύσεις μπορούν επίσης να βρεθούν από την θεωρίες όχλησης όπως ευθυγραμμισμένη βαρύτητα και την γενίκευσή της, η προ-Νευτώνια επέκταση, τα οποία αναπτύχθηκαν από τον Αϊνστάιν. Ο τελευταίος παρέχει μια συστηματική προσέγγιση στην επίλυση της γεωμετρία του χωροχρόνου μιας που περιέχει μια κατανομή της ύλης που κινείται αργά σε σύγκριση με την ταχύτητα του φωτός. Η επέκταση περιλαμβάνει μια σειρά από όρους:οι πρώτοι όροι αντιπροσωπεύουν νευτώνεια βαρύτητα, ενώ οι μετέπειτα όροι αντιπροσωπεύουν ολοένα και μικρότερες διορθώσεις στη θεωρία του Νεύτωνα λόγω της γενικής σχετικότητας. Η παράταση αυτής της επέκτασης είναι ο Παραμετρικοποιημένος μετα-Νευτώνειος (PPN) φορμαλισμός, ο οποίος επιτρέπει την ποσοτική σύγκριση μεταξύ των προβλέψεων της γενικής σχετικότητας και της εναλλακτικής θεωρίας.
Συνέπειες της θεωρίας του Αϊνστάιν
Η γενική σχετικότητα έχει μια σειρά από φυσικές συνέπειες. Μερικές απορρέουν απευθείας από τα αξιώματα της θεωρίας, ενώ άλλες έχουν καταστεί σαφείς μόνο κατά τη διάρκεια των ενενήντα χρόνια της έρευνας που ακολούθησε την αρχική δημοσίευση του Αϊνστάιν.
Σχηματική αναπαράσταση της βαρυτικής ερυθρούς μετατόπισης
ενός κύματος φωτός που διαφεύγει από την επιφάνεια του σώματος
μιας μάζας
|
Βαρυτική διαστολή του χρόνου και αλλαγή της συχνότητας
Υποθέτοντας ότι η αρχή της ισοδυναμίας ισχύει, η βαρύτητα επηρεάζει το πέρασμα του χρόνου.Το φώς στέλνεται μέσα σε ένα πηγάδι gravity wellτο οπίο ονομάζεται blueshift, ενώ το ελαφρύ αποστέλλεται προς την αντίθετη κατεύθυνση (δηλαδή, εξόδου από την βαρύτητα) είναι redshift συλλογικά, τα δύο αυτά φαινόμενα είναι γνωστά ως η βαρυτική μετατόπιση συχνότητας.Γενικότερα, οι διαδικασίες κοντά σε ένα τεράστιο σώμα τρέχουν πιο αργά σε σύγκριση με τις διαδικασίες που λαμβάνουν χώρα πιο μακριά. Αυτή η επίδραση είναι γνωστή ως βαρυτική διαστολή του χρόνου.
Η βαρυτική μετατόπιση προς το ερυθρό έχει μετρηθεί στο εργαστήριο χρησιμοποιώντας αστρονομικές παρατηρήσεις. Βαρυτική διαστολή του χρόνου στο βαρυτικό πεδίο της Γης έχει μετρηθεί πολλές φορές χρησιμοποιώντας ατομικά ρολόγια, ενώ η συνεχιζόμενη επικύρωση παρέχεται ως παρενέργεια της λειτουργίας του Παγκόσμιου Σύστηματος Εντοπισμού Θέσης]] (GPS)). Οι δοκιμές σε ισχυρότερα βαρυτικά πεδία παρέχονται από την παρατήρηση των δυαδικών pulsars. Όλα τα αποτελέσματα είναι σε συμφωνία με τη γενική σχετικότητα. Ωστόσο, στο σημερινό επίπεδο της ακρίβειας, οι παρατηρήσεις αυτές δεν μπορούν να διακριθούν μεταξύ της γενικής σχετικότητας και άλλες θεωρίες στις οποίες η αρχή της ισοδυναμίας ισχύει.
Deflection of light (sent out from the location shown
in blue) near a compact body (shown in gray)
|
Διάχυση φωτός και χρονική καθυστέρηση βαρύτητας
Η γενική σχετικότητα προβλέπει πως η διαδρομή του φωτός κάμπτεται σε ένα βαρυτικό πεδίο. Το φως που διέρχεται από ένα σώμα μεγάλου όγκου, διαχέεται προς το σώμα αυτό. Το φαινόμενο αυτό επιβεβαιώνεται παρατηρώντας ότι το φως των αστέρων ή των μακρινών κβάζαρ διαχέεται καθώς περνά τον ήλιο.
Αυτό καθώς και παρόμοιες υποθέσεις, προκύπτουν από το γεγονός που θέλει το φως να ακολουθεί αυτό που ονομάζουμε light-like (σαν φως) ή μηδενική γεωδαισιακή καμπύλη- δεν είναι παρά μία γενίκευση των ευθείων κατά τις οποίες ταξιδεύει το φως στην κλασική φυσική. Αυτού του είδους οι γεωδαισιακές καμπύλες είναι η γενίκευση των σταθερών της ταχύτητας του φωτός στην ειδική θεωρία. Εξετάζοντας κάποιος το κατάλληλο χωροχρονικό μοντέλο (είτε το εξωτερικό Schwarzschild solution είτε -όταν πρόκειται για περισσότερες από μία μάζες- το post-Newtonian expansion), διαφορα φαινόμενα της επίδρασης της βαρύτητας στο φως παρουσιάζονται. Αν και η κάμψη του φωτός μπορεί να εξηγηθεί απλά επεκτείνοντας την καθολική θεωρία της ελεύθερης πτώσης στο φώς, η γωνία εκτροπής που προκύπτει από τέτοιους υπολογισμούς έχει τη μισή τιμή από αυτή που προκύπτει από τη γενική σχετικότητα.
Στενά συνδεδεμένη με την διάχυση του φωτός είναι και η βαρυτική χρονική καθυστέρηση (ή καθυστέρηση Shapiro), φαινόμενο κατά το οποίο τα σήματα του φωτός αργούν να διέλθουν μέσω του βαρυτικού πεδίου. Για αυτή τη πρόβλεψη διάφορα τεστ έχουν πραγματοποιηθεί. Στον πραμετρικοποιημένο μετα-Νευτώνειο φορμαλισμό (PPN), οι μετρήσεις τόσο της διάχυσης του φωτός όσο και της βαρυτικής χρονικής καθυστέρησης προσδιορίζουν μια παράμετρο y, η οποία κωδικοποιεί την επίδραση της βαρύτητας στη γεωμετρία του σύμπαντος.
Δακτύλιος από σωματίδια τα οποία
επηρεάζονται από βαρυτικό κύμα
|
Βαρυτικά κύματα
Μία από τις πολλές αναλογίες μεταξύ της βαρύτητας ενός ασθενούς πεδίου και του ηλεκτρομαγνητισμού είναι ότι, ανάλογα με τα ηλεκτρομαγνητικά κύματα υπάρχουν βαρυτικά κύματα:κυματισμοί στην μετρική του χωροχρόνου που διαδίδονται με την ταχύτητα του φωτός. Η απλούστερη μορφή ενός τέτοιου κύματος μπορεί να απεικονιστεί με τη δράση του σε ένα δακτύλιο από σωματίδια τα οποία εκτελούν ελεύθερη πτώση. Ένα ημιτονοειδές κύμα διαδίδεται μέσω ενός τέτοιου δακτυλίου προς τον αναγνώστη και στρεβλώνει το δακτύλιο με ένα χαρακτηριστικό, ρυθμικό τρόπο.(βλέπε εικόνα στα δεξιά). Αφού οι εξισώσεις του Αϊνστάιν είναι μη γραμμικές,ισχυρά βαρυτικά κύματα δεν υπακούουν στην αρχή της επαλληλίας, καθιστώντας δύσκολη την περιγραφή τους. Αντίθετα, για ασθενή πεδία, μία γραμμική προσέγγιση μπορεί να επιτευχθεί. Τέτοια γραμμικά βαρυτικά κύματα αποτελούν αρκετά ακριβείς περιγραφές των εξαιρετικά αδύναμων κυμάτων που αναμένεται να φτάσουν στη Γη από μακρινά κοσμικά γεγονότα,τα οποία τυπικά καταλήγουν σε σχετικές αποστάσεις οι οποίες αυξάνονται και μειώνονται μέχρι και .Οι μέθοδοι ανάλυσης δεδομένων συνήθως κάνουν χρήση του γεγονότος ότι σε αυτά τα γραμμικά κύματα μπορεί να εφαρμοστεί ο μετασχηματισμός Fourier.
Μερικές ακριβείς λύσεις περιγράφουν βαρυτικά κύματα χωρίς καμία προσέγγιση, π.χ., ένα κύμα που εκπέμπεται από τρένο και ταξιδεύει στο κενό ή τα αποκαλούμενα σύμπαντα του Gowdi, μεταβλητές ενός διαστελλόμενου σύμπαντος το οποίο είναι γεμάτο με τα βαρυτικά κύματα. Αλλά τα βαρυτικά κύματα που παράγονται σε ειδικές καταστάσεις όπως η συγχώνευση δύο μαύρων τρυπών, οι αριθμητικές μέθοδοι είναι σήμερα ο μόνος τρόπος για να κατασκευαστούν κατάλληλα μοντέλα.
Τροχιακές επιδράσεις και η σχετικότητα της κατεύθυνσης
Η γενική σχετικότητα διαφέρει από την κλασική μηχανική σε έναν αριθμό προβλέψεων σχετικά με τα τροχιακά σώματα. Προβλέπει μια συνολική περιστροφή (μετάπτωση) των πλανητικών τροχιών, καθώς και την τροχιακή φθορά που προκαλείται από την εκπομπή των βαρυτικών κυμάτων και των επιπτώσεων που σχετίζονται με τη σχετικότητα της κατεύθυνσης.
Newtonian (red) vs. Einsteinian orbit (blue)
of a lone planet orbiting a star
|
Μετάπτωση των αψίδων
Στη γενική σχετικότητα, η αψίδα οποιασδήποτε τροχιάς (το σημείο της τροχιάς του σώματος στο κέντρο του συστήματος της μάζας) προπορευεται-η τροχιά δεν είναι μια έλλειψη, αλλά μοιάζει με μια έλλειψη που περιστρέφεται στο επίκεντρο της, με αποτέλεσμα ένα τριαντάφυλλο,καμπύλη που μοιάζει με το σχήμα.Αυτό το αποτέλεσμα προέρχεται πρώτα από τον Einstein,ο οποίος χρησιμοποιώντας μια κατά προσέγγιση μέτρηση αντιπροσωπεύει το Νευτώνειο όριο και το θέσιμο του σε τροχιά γύρω από το σώμα, όπως ένα σωματίδιο δοκιμής.Για τον ίδιο, το γεγονός ότι η θεωρία του έδωσε μια απλή εξήγηση των Ελέγχων της γενικής σχετικότητας Perihelion μετάπτωση του Ερμή,(ανώμαλη μετακίνηση του περιηλίου του πλανήτη Ερμή), που ανακαλύφθηκε νωρίτερα από Urbain Le Verrier το 1859, ήταν σημαντικά αποδεικτικά στοιχεία ότι είχε επιτέλους ορίσει τη σωστή μορφή των εξισώσεων πεδίου βαρύτητας(του Einstein).
Το αποτέλεσμα μπορεί επίσης να προέρχεται και από τη χρήση του ακριβή Schwarzschild μετρικού (που περιγράφει τις χωροχρονικές γύρω από μια σφαιρική μάζα).Αυτό οφείλεται στην επίδραση της βαρύτητας από τη γεωμετρία του χώρου και στη συμβολή της αυτο-ενέργειας της βαρύτητας ενός σώματος (που κωδικοποιείται στη μη γραμμικότητα των εξισώσεων του Einstein). Η σχετικιστική μετάπτωση έχει παρατηρηθεί για όλους τους πλανήτες που επιτρέπουν ακριβείς μετρήσεις μετάπτωσης (Ερμής, Αφροδίτη και Γη), καθώς και στα δυαδικά Pulsar συστήματα, όπου είναι μεγαλύτερα από πέντε τάξεις μεγέθους.
Αποσύνθεση τροχιάς για το PSR1913+16:Η αλλαγή
της ώρας σε δευτερόλεπτα, παρακολουθείται
πάνω από τρεις δεκαετίες.
|
Τροχιακή Φθορά
Σύμφωνα με τη γενική σχετικότητα, η δυαδικό σύστημα θα εκπέμπει κύματα βαρύτητας, με αποτέλεσμα να χάνει ενέργεια. Λόγω αυτής της απώλειας, η απόσταση μεταξύ των δύο φορέων σε τροχιά μειώνεται, και το ίδιο κάνει και η περίοδος της τροχιάς τους. Εντός του Ηλιακού Συστήματος ή για τα απλά διπλά αστέρια, η επίδραση είναι πολύ μικρή για να μπορεί να παρατηρηθεί. Αυτή δεν είναι η περίπτωση ενός δυαδικού πάλσαρ, ένα σύστημα δύο τροχιών άστρου νετρονίων , ένα εκ των οποίων είναι ένα πάλσαρ: από το πάλσαρ, οι παρατηρητές στη Γη λαμβάνουν μια τακτική σειρά ραδιοφωνικών παλμών που μπορεί να χρησιμεύσει ως ένα εξαιρετικά ακριβές ρολόι, το οποίο επιτρέπει ακριβείς μετρήσεις της τροχιακής περιόδου. Επειδή οι αστέρες νετρονίων είναι πολύ συμπαγείς, σημαντικές ποσότητες ενέργειας εκπέμπονται με τη μορφή ακτινοβολίας βαρύτητας.
Η πρώτη παρατήρηση της μείωσης στην τροχιακή περίοδο λόγω της εκπομπής των βαρυτικών κυμάτων έγινε από τους Hulse και Taylor, χρησιμοποιώντας ένα δυαδικό πάλσαρ PSR1913+16 που είχαν ανακαλυψεί το 1974. Αυτή ήταν η πρώτη ανίχνευση των βαρυτικών κυμάτων, έστω και έμμεση, για την οποία απονεμήθηκε το 1993 βραβείο Νόμπελ στη φυσική. Από τότε, πολλά άλλα δυαδικά πάλσαρ έχουν βρεθεί, και ιδίως το διπλό πάλσαρ PSR J0737-3039, στα οποία τα δύο αστέρια είναι πάλσαρ.
Γεωδαιτική μετάπτωση και βαρυτομαγνητισμός
Αρκετά σχετικιστικά φαινόμενα που συνδέονται άμεσα με την σχετικότητα της κατεύθυνσης. Ένα από αυτά είναι geodetic precession: την κατεύθυνση του άξονα του γυροσκοπίο σε ελεύθερη πτώση σε καμπύλο χωρόχρονο θα αλλάξει σε σύγκριση, για παράδειγμα, με την κατεύθυνση του φωτός που λαμβάνεται από μακρινά αστέρια, ακόμη και αν ένα τέτοιο γυροσκόπιο αντιπροσωπεύει τον τρόπο της διατήρησης μιας κατεύθυνσης όσο το δυνατόν σταθερότερα("παράλληλη μεταφορά"). Για το σύστημα Φεγγάρι–Γη, Αυτή η επίδραση έχει μετρηθεί με τη βοήθεια του σεληνιακού λέιζερ. Πιο πρόσφατα, έχει μετρηθεί για τις δοκιμαστικές μάζες πάνω στο δορυφόρο Gravity Probe B με ακρίβεια καλύτερη από 0,3%. Μια πρώτη μετά την πτήση αξιολόγηση δίνεται στο Everitt , Parkinson & Kahn 2007? Περαιτέρω ενημερώσεις θα είναι διαθέσιμες στην ιστοσελίδα της αποστολής Kahn 1996-2012.</ref> Κοντά σε μια περιστρεφόμενη μάζα, υπάρχουν τα λεγόμενα βαρυτομαγνητικά αποτελέσματα. Ένας μακρινός παρατηρητής θα καθορίσει ότι τα αντικείμενα κοντά στη μάζα να "σέρνονται γύρω». Αυτή είναι η πιο ακραία για την περιστρεφόμενες μαύρες τρύπες, όπου, για κάθε αντικείμενο εισέρχεται σε μια ζώνη γνωστή ως εργόσφαιρα, η περιστροφή είναι αναπόφευκτη.Τέτοια αποτελέσματα μπορεί και πάλι να ελέγχονται μέσω της επιρροής τους από τον προσανατολισμό του γυροσκοπίου σε ελεύθερη πτώση. για μια πιο πρόσφατη ανασκόπηση, βλέπε Schäfer 2004</ref> Κάπως έχουν αμφιλεγόμενες δοκιμές έγιναν χρησιμοποιώντας τα LAGEOS δορυφόρων, επιβεβαιώνοντας τη σχετικιστική πρόβλεψη. Επίσης, η Mars Global Surveyor έχει χρησιμοποιήσει καθετήρα γύρω από τον Άρη.
Διάγραμμα Πενρόουζ-Κάρτερ ενός άπειρου σύμπαντος Μινκόφσκι |
Αιτιώδης δομή και την παγκόσμια γεωμετρία
Στη γενική σχετικότητα, κανένα υλικό σώμα δεν μπορεί να καλύψει τη διαφορά ή να ξεπεράσει έναν παλμό φωτός.Καμία επίδραση από ένα γεγονός Α δε μπορεί να φτάσει οποιαδήποτε άλλη X θέση πριν το φως φτάσει στο Α Χ. Κατά συνέπεια, μια εξερεύνηση όλων των κοσμογραμμών του φωτός δίνει βασικές πληροφορίες σχετικά με την αιτιώδη δομή του χωροχρόνου του. Αυτή η δομή μπορεί να αναπαρασταθει χρησιμοποιώντας τα Πενρόουζ-Κάρτερ διαγράμματα στην οποία απείρως μεγάλες περιοχές του χώρου και άπειρα χρονικά διαστήματα έχουν συρρικνωθεί ("συμπαγοποιημένες") έτσι ώστε να χωρέσει σε ένα χάρτη πεπερασμένο, ενώ το φως ταξιδεύει ακόμα κατά μήκος των διαγωνίων, όπως στα πρότυπα διαγράμματα του χωροχρόνου.[132] Έχοντας επίγνωση της σημασίας της αιτιατούς δομής,ο Ρότζερ Πενρόουζ και αλλοι έχουν αναπτύξει αυτό που είναι γνωστό ως παγκόσμια γεωμετρία. Στην παγκόσμια γεωμετρία, το αντικείμενο μελέτης δεν είναι μία συγκεκριμένη λύση (ή μία οικογένεια λύσεων) με τις εξισώσεις του Αϊνστάιν.
Ορίζοντες
Χρησιμοποιώντας την παγκόσμια γεωμετρία,οι μερικοί χωροχρόνοι μπορεί να αποδειχθεί ότι περιέχουν όρια που ονομάζενται ορίζοντες, οι οποίoi οριοθετούν μια περιοχή από το υπόλοιπο του χωροχρόνου. Ένα από τα πιο γνωστά παραδείγματα είναι οι μαύρες τρύπες: εάν η μάζα συμπιέζεται σε μία επαρκώς συμπαγή περιοχή του χώρου (όπως ορίζεται στο εικασίες στεφάνης,η σχετική κλίμακα μήκους είναι η ακτίνα Schwarzschild), καθόλου φως δε μπορεί να ξεφύγει προς τα έξω. Δεδομένου ότι κανένα αντικείμενο δε μπορεί να προσπεράσει έναν παλμό φωτός. Το πέρασμα από το εξωτερικό προς το εσωτερικό είναι ακόμα δυνατό, δείχνοντας ότι το όριο, ορίζοντας της μαύρης τρύπας, δεν είναι ένα φυσικό εμπόδιο.
Η εργόσφαιρα μιας περιστρεφόμενης μαύρης τρύπας,
η οποία παίζει το ρόλο της εξαγωγής ενέργειας
από μια τέτοια μαύρη τρύπα
|
Η εργόσφαιρα μίας περιστρεφόμενης μαύρης τρύπας, η οποία παιζει το ρόλο της εξαγωγής ενέργεια από μία τέτοια μαύρη τρύπα. Οι πρώτες μελέτες των μαύρων τρυπών που επικαλούνται σαφείς λύσεις των εξισώσεων του Αϊνστάιν, και ιδίως τη σφαιρικά λύση συμμετρική Σβαρτζτσάιλντ (χρησιμοποιείται για να περιγράψει μια στατική μαύρη τρύπα) και το αξονοσυμμετρικού λύση Κερ (χρησιμοποιείται για να περιγράψει μία περιστρεφόμενη, σταθερή μαύρη τρύπα, και την εισαγωγή ενδιαφερώντων χαρακτηριστικών, όπως η εργόσφαιρα). Χρσημοποιώντας την παγκόσμια γεωμετρία, μεταγενέστερες μελέτες έχουν αποκαλύψει πιο γενικές ιδιότητες των μελανών οπών. Σε μακροπρόθεσμη βάση, είναι μάλλον απλά αντικείμενα που χαρακτηρίζονται από έντεκα παραμέτρους που προσδιορίζουν την ενέργεια, ορμή, στροφορμή, θέση σε ένα συγκεκριμένο χρονικό διάστημα και το ηλεκτρικό φορτίο. Αυτό υποδηλώνεται με τα θεωρήματα μοναδικότητας μιας μαύρης τρύπας: "το θεώρημα no-hair", δηλαδή, δεν υπάρχουν διακριτικά στοιχεία, όπως τα χτενίσματα των ανθρώπων. Ανεξάρτητα από την πολυπλοκότητα ενός αντικειμένου που βαρυτικά καταρρέει για να σχηματίσει μια μαύρη τρύπα, το αντικείμενο που προκύπτει (έχοντας εκπέμπψει κύματα βαρύτητας) είναι πολύ απλή. Ακόμη πιο εντυπωσιακά, υπάρχει ένα γενικό σύνολο των νόμων γνωστά ως μηχανική μαύρης τρύπας, η οποία είναι ανάλογη με τους νόμους της θερμοδυναμικής. Για παράδειγμα, από το δεύτερο νόμο της μηχανικής μαύρης τρύπας, η περιοχή του ορίζοντα περίπτωση γενικής μαύρη τρύπα ποτέ δεν θα μειώνεται με το χρόνο, ανάλογο με την εντροπία ενός θερμοδυναμικού συστήματος. Αυτό περιορίζει την ενέργεια που μπορεί να εξαχθεί κλασικά μέσα από μια περιστρεφόμενη μαύρη τρύπα (π.χ. από την Πένροουζ διεργασία). Υπάρχουν ισχυρές ενδείξεις ότι οι νόμοι της μηχανικής μιας μαύρης τρύπας, στην πραγματικότητα, ένα υποσύνολο των νόμων της θερμοδυναμικής, και ότι η περιοχή μαύρης τρύπας είναι ανάλογη με εντροπία της. Αυτό οδηγεί σε μια τροποποίηση των αρχικών νόμων της μηχανικής Ω : για παράδειγμα, όπως ο δεύτερος νόμος της μηχανικής μιας μαύρης τρύπας γίνεται μέρος του ο δεύτερος νόμο της θερμοδυναμικής, είναι δυνατό η περιοχή μιας μαύρης τρύπας να μειωθεί, όσο άλλες διαδικασίες εξασφαλίζουν ότι, συνολικά, η εντροπία αυξάνεται. Όπως θερμοδυναμικά αντικείμενα με μη μηδενική θερμοκρασία, οι μαύρες τρύπες πρέπει να εκπέμπουν θερμική ακτινοβολία. Ημι-κλασικοί υπολογισμοί δείχνουν ότι πράγματι το κάνουν, με την επιφάνεια να παίζει το ρόλο της θερμοκρασίας στο νόμο του Πλανκ. Αυτή η ακτινοβολία είναι γνωστή ως ακτινοβολία Χοκινγ (πρβλ. την κβαντική θεωρία ενότητα, παρακάτω). Υπάρχουν πολλοί τύποι οριζόντων. Σε ένα συνεχώς επεκτεινόμενο σύμπαν, ένας παρατηρητής μπορεί να διαπιστώσει ότι ορισμένες περιοχές του παρελθόντος δεν μπορεί να παρατηρηθούν («ορίζοντα των σωματιδίων"), και σε ορισμένες περιοχές του μέλλοντος δεν μπορεί να επηρεαστούν (ορίζοντας γεγονότων). Ακόμη και σε επίπεδο χώρο Μινκόφσκι, όταν περιγράφεται από την ταχεία παρατηρητή (Ράιντλερ διάστημα), θα υπάρξουν ορίζοντες που συνδέονται με μία ημι-κλασσική ακτινοβολία γνωστή ως ακτινοβολία Unruh.
Ανωμαλίες
Ένα άλλο γενικό και αρκετά ενοχλητικόχαρακτηριστικό γνώρισμα της γενικής σχετικότητας είναι η εμφάνιση του χωροχρόνου ορίων γνωστή ως μοναδικότητες. Ο χωροχρόνος μπορεί να διερευνηθεί με την παρακολούθηση των χρονικών και των καμπυλών που καλύπτουν τον χωροχρόνο-όλους τους δυνατούς τρόπους ότι το φως και τα σωματίδια σε ελεύθερη πτώση μπορούν να ταξιδέψουν. Αλλα μερικές λύσεις των εξισώσεων του Αινστάιν έχουν "οδοντωτές άκρες»-περιοχές γνωστές ως χωροχρόνου μοναδικότητες, όπου τα μονοπάτια του φωτός και η πτώση σωματιδίων έρθει σε ένα απότομο τέλος, και η γεωμετρία γίνεται ασαφή. Στις πιο ενδιαφέρουσες περιπτώσεις, αυτά είναι «μοναδικότητες καμπυλότητας", όπου γεωμετρικών μεγεθών που χαρακτηρίζουν καμπυλότητα του χωροχρόνου, όπως η Ρίτσι μονοδιάστατη, να αναλάβει απείρου. Γνωστά παραδείγματα του χωροχρόνου με μελλοντικές ανωμαλίες—όπου κοσμογραμμές τελειώνουν την λύση Σβαρτζτάιλντ, οι οποίες περιγράφουν inside το εσωτερικό μιας μαύρης τρύπας, η λύση Κερ με σχήμα δακτυλίου ιδιομορφία του μέσα σε ένα αιώνιο τρύπα περιστρεφόμενες μαύρες. Η Friedmann–Lemaître–Robertson–Walker λύση και άλλοι χωροχρόνοι περιγράφουν σύμπαντα που έχουν ιδιομορφίες οι καμπύλες του χωροχρόνου , δηλαδή Big Bang ανωμαλίες, και μερικές μελλοντικές ανωμαλίες(Big Crunch) επίσης.
Δεδομένου ότι αυτά τα παραδείγματα είναι όλα ιδιαίτερα συμμετρικά και έτσι απλοποιημένα-είναι δελεαστικό να συναχθεί το συμπέρασμα ότι η εμφάνιση των ανωμαλιών είναι ένα κατασκεύασμα της εξιδανίκευσης. Τα διάσημα θεωρήματα των ανωμαλιών, αποδεικνύονται χρησιμοποιώντας τις μεθόδους της παγκόσμιας γεωμετρίας, λένε το αντίθετο: οι ανωμαλίες είναι ένα γενικό χαρακτηριστικό της γενικής σχετικότητας, και αναπόφευκτα όταν η κατάρρευση ενός αντικειμένου με ρεαλιστικές ιδιοτήτων της ύλης έχει προχωρήσει πέρα από ένα ορισμένο στάδιο και, επίσης, κατά την έναρξη μιας ευρείας κατηγορίας της επέκτασης συμπάντων. Ωστόσο, τα θεωρήματα λένε πολλά για τις ιδιότητες των μοναδικοτήτων, και ένα μεγάλο μέρος της τρέχουσας έρευνας είναι αφιερωμένο στην χαρακτηρίζουσα γενική δομή αυτών των οντοτήτων (υπέθεσε π.χ. με τη λεγόμενη BKL εικασία). Η κοσμική υπόθεση λογοκρισίας δηλώνει ότι όλες οι ρεαλιστικές μελλοντικές ανωμαλίες (μη τέλειων συμμετρίων, το θέμα με ρεαλιστικές ιδιότητες) ασφάλεια κρυμμένα πίσω από ένα χρονικό ορίζοντα, και ως εκ τούτου αόρατα σε όλους τους μακρινούς παρατηρητές. Ενώ δεν υπάρχει επίσημη απόδειξη δεν υπάρχει ακόμα, αριθμητικές προσομοιώσεις προσφέρουν αποδεικτικά στοιχεία της ισχύος του.
Εξισώσεις Εξέλιξης
Κύριο άρθρο: Η αρχική σύνθεση (γενική σχετικότητα). Κάθε λύση των εξισώσεων του Einstein περιλαμβάνει όλη την ιστορία του σύμπαντος δεν είναι απλά κάποιο στιγμιότυπο του πώς έχουν τα πράγματα, αλλά ένα σύνολο, που πιθανόν έχει σημασία, ο χωρόχρονος. Περιγράφει την κατάσταση της ύλης και της γεωμετρίας παντού και σε κάθε στιγμή στο συγκεκριμένο σύμπαν. Λόγω της γενικής συνδιακύμανσης της, η θεωρία του Αϊνστάιν δεν αρκεί από μόνη της για να καθορίσει την χρονική εξέλιξη του μετρικού τανυστή. Θα πρέπει να συνδυαστεί με μια συντεταγμένη κατάσταση, η οποία είναι ανάλογη με τον καθορισμό σε άλλες θεωρίες πεδίου.[ Για να κατανοήσουμε τις εξισώσεις του Αϊνστάιν, όπως μερικές διαφορικές εξισώσεις, είναι χρήσιμο να διατυπώσει με τρόπο που να περιγράφει την εξέλιξη του σύμπαντος με την πάροδο του χρόνου. Αυτό γίνεται σε λεγόμενες συνθέσεις "3 +1", όπου χωροχρόνου χωρίζεται σε τρεις διαστάσεις χώρου και μία διάσταση του χρόνου.Το πιο γνωστό παράδειγμα είναι το ADM formalism. Οι αποσυνθέσεις δείχνουν ότι οι εξισώσεις εξέλιξης του χωροχρόνου της γενικής σχετικότητας συμπεριφέρονται καλά: λύσεις υπάρχουν πάντα, και είναι μοναδικές ορίζονται, όταν θα έχουν κατάλληλες αρχικές συνθήκες. Τέτοια σκευάσματα των εξισώσεων πεδίου του Einstein είναι η βάση της αριθμητικών σχετικότητας.
Παγκόσμιες και οιονεί τοπικές ποσότητες
Κύριο άρθρο: Μάζα στη γενική σχετικότητα. Η έννοια των εξισώσεων εξέλιξης είναι στενά συνδεδεμένη με μια άλλη πτυχή της γενικής σχετικιστικής φυσικής. Στη θεωρία του Αϊνστάιν, είναι αδύνατο να βρεθεί ένας γενικός ορισμός για μια φαινομενικά απλή ιδιότητα, όπως η συνολική μάζα ενός συστήματος (ή ενέργεια). Ο κύριος λόγος είναι ότι το βαρυτικό πεδίο, όπως και κάθε φυσικό πεδίο, θα πρέπει να αποδοθεί μια ορισμένη ενέργεια, αλλά αποδεικνύεται ότι είναι ουσιαστικά αδύνατο να εντοπίσουν αυτή την ενέργεια. Παρ 'όλα αυτά, υπάρχουν δυνατότητες να καθοριστεί συνολική μάζα ενός συστήματος, είτε χρησιμοποιώντας μια υποθετική «απείρως μακρινό παρατηρητή" (μάζα ADM) ή κατάλληλες συμμετρίες (μάζα Κόμαρ). Αν αφαιρεθούν από συνολική μάζα του συστήματος η ενέργεια που μεταφέρεται μακριά στο άπειρο από τα βαρυτικά κύματα, το αποτέλεσμα είναι η λεγόμενη μάζα Bondi στο φωτοειδές άπειρο. Ακριβώς όπως στην κλασσική φυσική, μπορεί να αποδειχθεί ότι αυτές οι μάζες είναι θετικές. Αντίστοιχοι παγκόσμιοι ορισμοί υπάρχουν για την ορμή και στροφορμή. Υπήρξαν επίσης μια σειρά από απόπειρες να καθορίστουν οιονεί τοπικές ποσότητες, όπως η μάζα ενός απομονωμένου συστήματος διατυπώνονται χρησιμοποιώντας μόνο τις ποσότητες που ορίζονται στο πλαίσιο μιας συγκεκριμένης περιοχής του διαστήματος που περιέχει το εν λόγω σύστημα. Η ελπίδα είναι να προμηθευτούμε μία ποσότητα χρήσιμη για γενικές δηλώσεις σχετικά απομονωμένα συστήματα, όπως μια ακριβέστερη διατύπωση της εικασίας στεφάνης. Σχέση με την κβαντική θεωρία.
Εάν η γενική σχετικότητα θεωρείται ένας από τους δύο πυλώνες της σύγχρονης φυσικής, η κβαντική θεωρία, με βάση την κατανόηση της ύλης από στοιχειώδη σωματίδια στη φυσική στερεάς κατάστασης, είναι η άλλη.[162] Ωστόσο, είναι ακόμη ένα αναπάντητο ερώτημα για το πώς οι έννοιες της κβαντικής θεωρίας μπορούν να συμβιβαστούν με αυτές της γενικής σχετικότητας.
Η κβαντική θεωρία πεδίου σε καμπύλο χωρόχρονο
Οι κοινές κβαντικές θεωρίες πεδίου, οι οποίες αποτελούν τη βάση της σύγχρονης φυσικής στοιχειωδών σωματιδίων, που ορίζεται σε επίπεδο χώρο Μινκόφσκι, η οποία είναι μια εξαιρετική προσέγγιση, όταν πρόκειται για την περιγραφή της συμπεριφοράς των μικροσκοπικών σωματιδίων σε ασθενή βαρυτικά πεδία, όπως αυτά που βρέθηκαν στη Γη. Για να περιγράψει καταστάσεις στις οποίες η βαρύτητα είναι αρκετά ισχυρή για να επηρεάσει, δεν είναι ακόμη αρκετά ισχυρή ώστε να απαιτούν κβάντωση της, οι φυσικοί έχουν διατυπωσεί θεωρίες κβαντικού πεδίου σε καμπύλο χωρόχρονο. Οι θεωρίες αυτές βασίζονται στη γενική σχετικότητα για να περιγράψουν μια καμπύλη χωροχρόνου, και να ορίσουν μια γενικευμένη κβαντική θεωρία πεδίου για να περιγράψει τη συμπεριφορά της ύλης εντός του εν λόγω χωροχρόνου. Χρησιμοποιώντας αυτό τη μέθοδο, μπορεί να αποδειχθεί ότι οι μαύρες τρύπες εκπέμπουνένα μελανό φάσμα των σωματιδίων που είναι γνωστό ως ακτινοβολία Χόκινγκ, που οδηγεί στην πιθανότητα ότι εξατμίζεται με την πάροδο του χρόνου. Όπως αναφέρθηκε εν συντομία παραπάνω, αυτή η ακτινοβολία παίζει σημαντικό ρόλο για τη θερμοδυναμική των μαύρων οπών.
Κβαντική Βαρύτητα
Κύριο άρθρο: Κβαντική Βαρύτητα Δείτε επίσης: Θεωρία των χορδών, η Κανονική γενική σχετικότητα, κβαντική βαρύτητα βρόχων, και αιτιατό σύνολο Η ζήτηση για τη συνοχή μεταξύ κβαντικής περιγραφής της ύλης και μιας γεωμετρικής περιγραφής του χωροχρόνου, καθώς και η εμφάνιση των ανωμαλιών (όπου κλίμακες μήκους καμπυλότητας γίνει μικροσκοπική), υποδεικνύουν την ανάγκη για μια πλήρη θεωρία της κβαντικής βαρύτητας: για την κατάλληλη περιγραφή του εσωτερικού των μελανών οπών, και του πολύ πρώιμου σύμπαντος, μια θεωρία απαιτείται οποία η βαρύτητα και η σχετική γεωμετρία του χωροχρόνου περιγράφονται στη γλώσσα της κβαντικής φυσικής. Παρά τις μεγάλες προσπάθειες, δεν υπάρει πλήρη και συνεπή θεωρία της κβαντικής βαρύτητας όπως είναι επί του παρόντος γνωστό, αν και ένας αριθμός πολλά υποσχόμενων υποψήφιων υπάρχουν.
Projection of a Calabi–Yau manifold, one of the ways
of compactifying the extra dimensions posited by string theory
|
Προβολή ενός Calabi-Yau πολλαπλή, ένας από τους τρόπους συμπαγοποιησης των επιπλέον διαστάσεων που θέτονται από τη θεωρία χορδών. Προσπαθεί να γενικεύσει συνήθεις θεωρίες κβαντικού πεδίου, χρησιμοποιείται στην φυσική των στοιχειωδών σωματιδίων για να περιγράψει τις θεμελιώδεις αλληλεπιδράσεις, ώστε να συμπεριλάβει τη βαρύτητα που έχει οδηγήσει σε σοβαρά προβλήματα.Σε χαμηλές ενέργειες, αυτή η προσέγγιση έχει αποδειχθεί επιτυχής, δεδομένου ότι αυτό οδηγεί σε ένα αποδεκτό αποτέλεσμα (κβαντική) θεωρία πεδίου της βαρύτητας. Σε πολύ υψηλές ενέργειες, ωστόσο, το αποτέλεσμα είναι που μοντέλα στερούνται όλης της προβλεπτικής ικανότητας.
Simple spin network of the type
used in loop quantum gravity
|
Απλό δίκτυο σπιν του τύπου που χρησιμοποιείται στην κβαντική βαρύτητα βρόχων. Μια προσπάθεια να ξεπεραστούν αυτοί οι περιορισμοί είναι η θεωρία των χορδών, μια κβαντική θεωρία δεν είναι σημειακά σωματίδια, αλλά λεπτά μονοδιάστατα εκτεταμένα αντικείμενα. Η θεωρία υπόσχεται να είναι μια ενοποιημένη περιγραφή όλων των σωματιδίων και των αλληλεπιδράσεων, συμπεριλαμβανομένης της βαρύτητας, το τίμημα είναι ασυνήθιστα χαρακτηριστικά, όπως έξι επιπλέον διαστάσεις του χώρου, εκτός από τις συνήθεις τρεις. Σε ό,τι ονομάζεται η δεύτερη επανάσταση των υπερχορδών, ήταν εικάζεται ότι τόσο η θεωρία χορδών και ενοποίησης της γενικής σχετικότητας και της υπερσυμμετρίας είναι γνωστή ως υπερβαρύτητα αποτελούν μέρος ενός υποτιθέμενου έντεκα-τρισδιάστατο μοντέλο γνωστό ως Μ-θεωρία, η οποία θα αποτελέσει μια μοναδική ορίζεται και συνεπή θεωρία της κβαντικής βαρύτητας. Μια άλλη προσέγγιση ξεκινά με τις κανονικές διαδικασίες κβαντισμού της κβαντικής θεωρίας. Χρησιμοποιώντας την αρχική αξία τους η διατύπωση της γενικής σχετικότητας (βλ. εξισώσεις εξέλιξης παραπάνω), το αποτέλεσμα είναι η Wheeler-deWitt εξίσωση (ένα ανάλογο της εξίσωσης Schrödinger), η οποία, δυστυχώς, αποδεικνύεται ότι είναι ασαφή. Ωστόσο, με την εισαγωγή του τι είναι τώρα γνωστή ως μεταβλητές Ashtekar, αυτό οδηγεί σε έναν πολλά υποσχόμενο μοντέλο γνωστό ως κβαντική βαρύτητα βρόχων. Ο χώρος αντιπροσωπεύεται από μία δομή που ονομάζεται ένα δίκτυο σπιν, εξελίσσονται με το χρόνο σε διακριτά βήματα. Ανάλογα με τα ποια είναι τα χαρακτηριστικά της γενικής σχετικότητας και της κβαντικής θεωρίας αποδέχθηκε αναλλοίωτη, και σε ό,τι αλλαγές επίπεδο εισάγονται, υπάρχουν πολλές άλλες προσπάθειες για να καταλήξουμε σε μια βιώσιμη θεωρία της κβαντικής βαρύτητας, είναι μερικά παραδείγματα δυναμικών triangulations, αιτιώδης σύνολα, twistor μοντέλα ή path-integral based με βάση τα μοντέλα της κβαντικής κοσμολογίας. Όλες οι υποψήφιες θεωρίες εξακολουθούν να έχουν σημαντικά επίσημα και εννοιολογικά προβλήματα να ξεπεραστούν. Μπορούν επίσης να αντιμετωπίσουν το κοινό πρόβλημα που, μέχρι στιγμής, δεν υπάρχει τρόπος να τεθούν προβλέψεις κβαντική βαρύτητα για πειραματικές δοκιμές (και, επομένως, να αποφασίσουν μεταξύ των υποψηφίων, όπου διαφέρουν οι προβλέψεις τους), αν και δεν υπάρχει ελπίδα γι 'αυτό να αλλάξει, όπως μελλοντικά δεδομένα από την κοσμολογική παρατηρήση και πειράματα σωματιδιακής φυσικής είναι διαθέσιμες.
Τρέχουσα κατάσταση
Η γενική σχετικότητα έχει αναδειχθεί ως ένα πολύ επιτυχημένο μοντέλο της βαρύτητας και της κοσμολογίας, το οποίο μέχρι σήμερα έχει περάσει πολλά σαφή παρατήρησης και πειραματικές δοκιμές. Ωστόσο, υπάρχουν ισχυρές ενδείξεις ότι η θεωρία είναι ατελής. Το πρόβλημα της κβαντικής βαρύτητας και το ζήτημα της πραγματικότητας του χωροχρόνου ιδιομορφίες που παραμένουν ανοικτά. Παρατηρησιακά δεδομένα που έχει ληφθεί ως αποδεικτικό στοιχείο για την σκοτεινή ενέργεια και η σκοτεινή ύλη θα μπορούσανε να δείξουυνε την ανάγκη για νέα φυσική. Ακόμη και αν λαμβάνονται όπως είναι, η γενική σχετικότητα είναι πλούσια με δυνατότητες για περαιτέρω διερεύνησης. Μαθηματικοί σχετικιστές προσπαθούν να κατανοήσουν τη φύση των ανωμαλιών και τις θεμελιώδεις ιδιότητες των εξισώσεων του Αϊνστάιν, και τρέχουν όλο και πιο ισχυρές προσομοιώσεις σε ηλεκτρονικό υπολογιστή (όπως αυτές που περιγράφουν τη συγχώνευση μαύρες τρύπες). Ο αγώνας για την πρώτη άμεση ανίχνευση των βαρυτικών κυμάτων συνεχίζεται, με την ελπίδα της δημιουργίας ευκαιριών για τη δοκιμή ισχύος της θεωρίας για πολύ ισχυρότερα βαρυτικά πεδία από ό,τι ήταν δυνατόν μέχρι σήμερα. Περισσότερα από ενενήντα χρόνια μετά τη δημοσίευσή της, η γενική σχετικότητα παραμένει ένα εξαιρετικά ενεργός τομέας της έρευνας.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
αβαγνον